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13.1  INTRODUCTION

In the previous chapter, we have learnt that in every atom, the positive

charge and mass are densely concentrated at the centre of the atom

forming its nucleus. The overall dimensions of a nucleus are much smaller

than those of an atom. Experiments on scattering of α-particles

demonstrated that the radius of a nucleus was smaller than the radius

of an atom by a factor of about 104. This means the volume of a nucleus

is about 10–12 times the volume of the atom. In other words, an atom is

almost empty. If an atom is enlarged to the size of a classroom, the nucleus

would be of the size of pinhead. Nevertheless, the nucleus contains most

(more than 99.9%) of the mass of an atom.

Does the nucleus have a structure, just as the atom does?  If so, what

are the constituents of the nucleus?  How are these held together? In this

chapter, we shall look for answers to such questions. We shall discuss

various properties of nuclei such as their size, mass and stability, and

also associated nuclear phenomena such as radioactivity, fission and fusion.

13.2  ATOMIC MASSES AND COMPOSITION OF NUCLEUS

The mass of an atom is very small, compared to a kilogram;  for example,

the mass of a carbon atom, 12C, is 1.992647 × 10–26 kg. Kilogram is not
a very convenient unit to measure such small quantities. Therefore, a
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different mass unit is used for expressing atomic masses. This unit is the
atomic mass unit (u), defined as 1/12th of the mass of the carbon (12C)
atom. According to this definition

12 mass of one C atom
1u = 

12

     
261.992647 10 kg

12

−×
=

     271.660539 10 kg−= × (13.1)

The atomic masses of various elements expressed in atomic mass

unit (u) are close to being integral multiples of the mass of a hydrogen
atom. There are, however, many striking exceptions to this rule. For
example, the atomic mass of chlorine atom is 35.46 u.

Accurate measurement of atomic masses is carried out with a mass
spectrometer, The measurement of atomic masses reveals the existence
of different types of atoms of the same element, which exhibit the same

chemical properties, but differ in mass. Such atomic species of the same
element differing in mass are called isotopes. (In Greek, isotope means
the same place, i.e. they occur in the same place in the periodic table of

elements.) It was found that practically every element consists of a mixture
of several isotopes.  The relative abundance of different isotopes differs
from element to element. Chlorine, for example, has two isotopes having

masses 34.98 u and 36.98 u, which are nearly integral multiples of the
mass of a hydrogen atom.  The relative abundances of these isotopes are
75.4 and 24.6 per cent, respectively.  Thus, the average mass of a chlorine

atom is obtained by the weighted average of the masses of the two
isotopes,  which works out to be

= 
75.4 34.98 24.6 36.98

100

× + ×

=  35.47 u
which agrees with the atomic mass of chlorine.

Even the lightest element, hydrogen has three isotopes having masses

1.0078 u, 2.0141 u, and 3.0160 u.  The nucleus of the lightest atom of
hydrogen, which has a relative abundance of 99.985%, is called the
proton.  The mass of a proton is

271.00727 u 1.67262 10 kgpm −= = × (13.2)

This is equal to the mass of the hydrogen atom (= 1.00783u), minus

the mass of a single electron (m
e 
= 0.00055 u).  The other two isotopes of

hydrogen are called deuterium and tritium. Tritium nuclei, being
unstable, do not occur naturally and are produced artificially in

laboratories.
The positive charge in the nucleus is that of the protons. A proton

carries one unit of fundamental charge and is stable. It was earlier thought

that the nucleus may contain electrons, but this was ruled out later using
arguments based on quantum theory. All the electrons of an atom are
outside the nucleus. We know that the number of these electrons outside

the nucleus of the atom is Z, the atomic number. The total charge of the
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atomic electrons is thus (–Ze), and since the atom is neutral, the charge
of the nucleus is (+Ze). The number of protons in the nucleus of the atom
is, therefore, exactly Z, the atomic number.

Discovery of Neutron

Since the nuclei of deuterium and tritium are isotopes of hydrogen, they
must contain only one proton each.  But the masses of the nuclei of

hydrogen, deuterium and tritium are in the ratio of 1:2:3.  Therefore, the
nuclei of deuterium and tritium must contain,  in addition to a proton,
some neutral matter.  The amount of neutral matter present in the nuclei

of these isotopes, expressed in units of mass of a proton, is approximately
equal to one and two, respectively.  This fact indicates that the nuclei of
atoms contain, in addition to protons, neutral matter in multiples of a

basic unit.  This hypothesis was verified in 1932 by James Chadwick
who observed emission of neutral radiation when beryllium nuclei were

bombarded with alpha-particles (α-particles are helium nuclei, to be

discussed in a later section). It was found that this neutral radiation
could knock out protons from light nuclei such as those of helium, carbon

and nitrogen. The only neutral radiation known at that time was photons
(electromagnetic radiation). Application of the principles of conservation
of energy and momentum showed that if the neutral radiation consisted

of photons, the energy of photons would have to be much higher than is

available from the bombardment of beryllium nuclei with α-particles.

The clue to this puzzle, which Chadwick satisfactorily solved, was to
assume that the neutral radiation consists of a new type of neutral
particles called neutrons.  From conservation of energy and momentum,

he was able to determine the mass of new particle ‘as very nearly the
same as mass of proton’.

The mass of a neutron is now known to a high degree of accuracy. It is

m
n
 = 1.00866 u = 1.6749×10–27 kg (13.3)

Chadwick was awarded the 1935 Nobel Prize in Physics for his
discovery of the neutron.

A free neutron, unlike a free proton, is unstable.  It decays into a
proton, an electron and a antineutrino (another elementary particle), and
has a mean life of about 1000s.  It is, however, stable inside the nucleus.

The composition of a nucleus can now be described using the following
terms and symbols:

Z - atomic number = number of protons [13.4(a)]

N - neutron number = number of neutrons [13.4(b)]

A - mass number = Z + N

                              = total number of protons and neutrons [13.4(c)]

One also uses the term nucleon for a proton or a neutron. Thus the
number of nucleons in an atom is its mass number A.

Nuclear species or nuclides are shown by the notation XA
Z

 where X is

the chemical symbol of the species.  For example, the nucleus of gold is

denoted by 197
79 Au .  It contains 197 nucleons, of which 79 are protons

and the rest118 are neutrons.
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The composition of isotopes of an element can now be readily
explained.  The nuclei of isotopes of a given element contain the same
number of protons, but differ from each other in their number of neutrons.

Deuterium, 2
1 H , which is an isotope of hydrogen, contains one proton

and one neutron.  Its other isotope tritium, 3
1 H , contains one proton and

two neutrons.  The element gold has 32 isotopes, ranging from A =173 to

A = 204.  We have already mentioned that chemical properties of elements
depend on their electronic structure.  As the atoms of isotopes have
identical electronic structure they have identical chemical behaviour and

are placed in the same location in the periodic table.
All nuclides with same mass number A are called isobars.  For

example, the nuclides 3
1 H  and 3

2 He  are isobars.  Nuclides with same

neutron number N but different atomic number Z, for example 198
80 Hg

and 197
79 Au , are called isotones.

13.3  SIZE OF THE NUCLEUS

As we have seen in Chapter 12, Rutherford was the pioneer who

postulated and established the existence of the atomic nucleus. At

Rutherford’s suggestion, Geiger and Marsden performed their classic

experiment: on the scattering of α-particles from thin gold foils. Their

experiments revealed that the distance of closest approach to a gold

nucleus of an α-particle of kinetic energy 5.5 MeV is about 4.0 × 10–14 m.

The scattering of α-particle by the gold sheet could be understood by

Rutherford by assuming that the coulomb repulsive force was solely

responsible for scattering. Since the positive charge is confined to the

nucleus, the actual size of the nucleus has to be less than 4.0 × 10–14 m.

If we use α-particles of higher energies than 5.5 MeV, the distance of

closest approach to the gold nucleus will be smaller and at some point

the scattering will begin to be affected by the short range nuclear forces,

and differ from Rutherford’s calculations. Rutherford’s calculations are

based on pure coulomb repulsion between the positive charges of the α-

particle and the gold nucleus. From the distance at which deviations set

in, nuclear sizes can be inferred.

By performing scattering experiments in which fast electrons, instead
of α-particles, are projectiles that bombard targets made up of various
elements, the sizes of nuclei of various elements have been accurately

measured.
It has been found that a nucleus of mass number A has a radius

R = R
0 

A1/3 (13.5)

where R
0
 = 1.2 × 10–15 m (=1.2 fm; 1 fm = 10–15 m). This means the volume

of the nucleus, which is proportional to R3 is proportional to A. Thus the

density of nucleus is a constant, independent of A,  for all nuclei. Different

nuclei are like a drop of liquid of constant density. The density of nuclear

matter is approximately 2.3 × 1017 kg m–3. This density is very large

compared to ordinary matter, say water, which is 103 kg m–3. This is

understandable, as we have already seen that most of the atom is empty.

Ordinary matter consisting of atoms has a large amount of empty space.
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Example 13.1 Given the mass of iron nucleus as 55.85u and A=56,
find the nuclear density?

Solution

m
Fe

 = 55.85,    u = 9.27 × 10–26  kg

Nuclear density = 
mass

volume
 = 

26

15 3

9.27 10 1

56(4 /3)(1.2 10 )

−

−

×
×

π ×

 = 2.29 × 1017 kg m–3

The density of matter in neutron stars (an astrophysical object) is
comparable to this density. This shows that matter in these objects

has been compressed to such an extent that they resemble a big nucleus.

13.4  MASS-ENERGY AND NUCLEAR BINDING ENERGY

13.4.1  Mass – Energy

Einstein showed from his theory of special relativity that it is necessary

to treat mass as another form of energy. Before the advent of this theory
of special relativity it was presumed  that mass and energy were conserved
separately in a reaction. However, Einstein showed that mass is another

form of energy and one can convert mass-energy into other forms of
energy, say kinetic energy and vice-versa.

Einstein gave the famous mass-energy equivalence relation

E = mc2 (13.6)

Here the energy equivalent of mass m is related by the above equation

and c is the velocity of light in vacuum and is approximately equal to
3×108 m s–1.

Example 13.2 Calculate the energy equivalent of 1 g of substance.

Solution

Energy, E = 10–3  × ( 3 × 108)2 J

     E = 10–3 × 9 × 1016 = 9 × 1013 J

Thus, if one gram of matter is converted to energy, there is a release

of enormous amount of energy.

Experimental verification of the Einstein’s mass-energy relation has

been achieved in the study of nuclear reactions amongst nucleons, nuclei,

electrons and other more recently discovered particles. In a reaction the

conservation law of energy states that the initial energy and the final

energy are equal provided the energy associated with mass is also

included. This concept is important in understanding nuclear masses

and the interaction of nuclei with one another. They form the subject

matter of the next few sections.

13.4.2  Nuclear binding energy

In Section 13.2 we have seen that the nucleus is made up of neutrons
and protons.  Therefore it may be expected that the mass of the nucleus

is equal to the total mass of its individual protons and neutrons.  However,
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the nuclear mass M is found to be always less than this.  For example, let

us consider 16
8 O ; a nucleus which has 8 neutrons and 8 protons.  We

have

Mass of 8 neutrons = 8 × 1.00866 u

Mass of 8 protons   = 8 × 1.00727 u

Mass of 8 electrons = 8 × 0.00055 u

Therefore the expected mass of 16
8 O  nucleus

= 8 × 2.01593 u = 16.12744 u.

The atomic mass of 16
8 O  found from mass spectroscopy experiments

is seen to be 15.99493 u. Substracting the mass of 8 electrons (8 × 0.00055 u)

from this, we get the experimental mass of 16
8 O  nucleus to be 15.99053 u.

Thus, we find that the mass of the 16
8 O  nucleus is less than the total

mass of its constituents by 0.13691u. The difference in mass of a nucleus

and its constituents, ∆M, is called the mass defect, and is given by

[ ( ) ]p nM Zm A Z m M∆ = + − − (13.7)

What is the meaning of the mass defect? It is here that Einstein’s
equivalence  of mass and energy plays a role. Since the mass of the oxygen

nucleus is less that the sum of the masses of its constituents (8 protons
and 8 neutrons, in the unbound state), the equivalent energy of the oxygen
nucleus is less than that of the sum of the equivalent energies of its

constituents. If one wants to break the oxygen nucleus into 8 protons

and 8 neutrons, this extra energy ∆M c2, has to supplied. This energy

required E
b
 is related to the mass defect by

E
b
 = ∆ M c2 (13.8)

Example 13.3  Find the energy equivalent of one atomic mass unit,
first in Joules and then in MeV.  Using this, express the mass defect

of 16
8 O  in MeV/c2.

Solution
1u = 1.6605 × 10–27 kg
To convert it into energy units, we multiply it by c2 and find that

energy equivalent = 1.6605 × 10–27 × (2.9979 × 108)2 kg m2/s2

      = 1.4924 × 10–10 J

      =   

10

19

1.4924 10
eV

1.602 10

−

−

×

×

      =   0.9315 × 109 eV
      =   931.5 MeV

or, 1u = 931.5 MeV/c2

For 16
8 O ,   ∆M = 0.13691 u = 0.13691×931.5 MeV/c2

= 127.5 MeV/c2

The energy needed to separate 16
8 O  into its constituents is thus

127.5 MeV/c2.

If a certain number of neutrons and protons are brought together to

form a nucleus of a certain charge and mass, an energy E
b
 will be released
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in the process.  The energy E
b
 is called the binding energy of the nucleus.

If we separate a nucleus into its nucleons, we would have to supply a
total energy equal to E

b
, to those particles.  Although we cannot tear

apart a nucleus in this way, the nuclear binding energy is still a convenient
measure of how well a nucleus is held together.  A more useful measure
of the binding between the constituents of the nucleus is the binding

energy per nucleon, E
bn

, which is the ratio of the binding energy E
b
 of a

nucleus to the number of the nucleons, A, in that nucleus:

E
bn  

 =  E
b
 / A (13.9)

We can think of binding energy per nucleon as the average energy
per nucleon needed to separate a nucleus into its individual nucleons.

Figure 13.1 is a plot of the

binding energy per nucleon E
bn

versus the mass number A for a
large number of nuclei. We notice

the following main features of
the plot:
(i) the binding energy per

nucleon, E
bn

, is practically
constant, i.e. practically
independent of the atomic
number for nuclei of middle

mass number ( 30 < A < 170).
The curve has a maximum of
about 8.75 MeV for A = 56

and has a value of 7.6 MeV
for A = 238.

(ii) E
bn

 is lower for both light

nuclei (A<30) and heavy
nuclei (A>170).

We can draw some conclusions from these two observations:

(i) The force is attractive and sufficiently strong to produce a binding
energy of a few MeV per nucleon.

(ii) The constancy of the binding energy in the range 30 < A < 170 is a

consequence of the fact that the nuclear force is short-ranged. Consider
a particular nucleon inside a sufficiently large nucleus. It will be under
the influence of only some of its neighbours, which come within the

range of the nuclear force. If any other nucleon is at a distance more
than the range of the nuclear force from the particular nucleon it will
have no influence on the binding energy of the nucleon under

consideration. If a nucleon can have a maximum of p neighbours
within the range of nuclear force, its binding energy would be
proportional to p. Let the binding energy of the nucleus be pk, where

k is a constant having the dimensions of energy. If we increase A by
adding nucleons they will not change the binding energy of a nucleon
inside. Since most of the nucleons in a large nucleus reside inside it

and not on the surface, the change in binding energy per nucleon
would be small. The binding energy per nucleon is a constant and is
approximately equal to pk. The property that a given nucleon

FIGURE 13.1 The binding energy per nucleon
as a function of mass number.
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influences only nucleons close to it is also referred to as saturation
property of the nuclear force.

(iii) A very heavy nucleus, say A = 240, has lower binding energy per

nucleon compared to that of a  nucleus with A = 120. Thus if a
nucleus A = 240 breaks into two A = 120 nuclei, nucleons get more
tightly bound. This implies energy would be released in the process.

It has very important implications for energy production through
fission, to be discussed later in Section 13.7.1.

(iv) Consider two very light nuclei (A ≤ 10) joining to form a heavier

nucleus. The binding energy  per nucleon of the fused heavier nuclei
is more than the binding energy per nucleon of the lighter nuclei.
This means that the final system is more tightly bound than the initial

system. Again energy would be released in such a process of
fusion. This is the energy source of sun, to be discussed later in
Section 13.7.3.

13.5  NUCLEAR FORCE

The force that determines the motion of atomic electrons is the familiar

Coulomb force. In Section 13.4,  we have seen that for average mass

nuclei the binding energy per nucleon is  approximately 8 MeV, which is

much larger than the binding energy in atoms. Therefore, to bind a

nucleus together there must be a strong attractive force of a totally

different kind. It must be strong enough to overcome the repulsion

between the (positively charged) protons and to bind both protons and

neutrons into the tiny nuclear volume. We have already seen

that the constancy of binding energy per nucleon can be

understood in terms of its short-range. Many features of the

nuclear binding force are summarised below. These are

obtained from a variety of experiments carried out during 1930

to 1950.

(i) The nuclear force is much stronger than the Coulomb force

acting between charges or the gravitational forces between

masses. The nuclear binding force has to dominate over

the Coulomb repulsive force between protons inside the

nucleus. This happens only because the nuclear force is

much stronger than the coulomb force. The gravitational

force is much weaker  than even Coulomb force.

(ii) The nuclear force between two nucleons falls rapidly to

zero as their distance is more than a few femtometres. This

leads to saturation of forces in a medium or a large-sized

nucleus, which is the reason for the constancy of the

binding energy per nucleon.

A rough plot of the potential energy between two nucleons

as a function of distance is shown in the Fig. 13.2. The

potential energy is a minimum at a distance r
0
 of about

0.8 fm. This means that the force is attractive for distances larger

than 0.8 fm and repulsive if they are separated by distances less

than 0.8 fm.

FIGURE 13.2 Potential energy
of a pair of nucleons as a

function of their separation.

For a separation greater
than r

0
, the force is attractive

and for separations less

than r
0
, the force is

strongly repulsive.
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(iii) The nuclear force between neutron-neutron, proton-neutron and
proton-proton is approximately the same. The nuclear force does not
depend on the electric charge.

Unlike Coulomb’s law or the Newton’s law of gravitation there is no
simple mathematical form of the nuclear force.

13.6  RADIOACTIVITY

A. H. Becquerel discovered radioactivity in 1896 purely by accident.  While

studying the fluorescence and phosphorescence of compounds irradiated
with visible light, Becquerel observed an interesting phenomenon.  After
illuminating some pieces of uranium-potassium sulphate with visible

light, he wrapped them in black paper and separated the package from a
photographic plate by a piece of silver.  When, after several hours of
exposure, the photographic plate was developed, it showed blackening

due to something that must have been emitted by the compound and
was able to penetrate both black paper and the silver.

Experiments performed subsequently showed that radioactivity was

a nuclear phenomenon in which an unstable nucleus undergoes a decay.
This is referred to as radioactive decay. Three types of radioactive decay
occur in nature :

(i) α-decay in which a helium nucleus 4

2
He  is emitted;

(ii) β-decay in which electrons or positrons (particles with the same mass

as electrons, but with a charge exactly opposite to that of electron)
are emitted;

(iii) γ-decay in which high energy (hundreds of keV or more) photons are

emitted.

Each of these decay will be considered in subsequent sub-sections.

13.6.1  Law of radioactive decay

In any radioactive sample, which undergoes α, β or γ-decay, it is found

that the number of nuclei undergoing the decay per unit time is
proportional to the total number of nuclei in the sample. If N is the

number of nuclei in the sample and ∆N undergo decay in time ∆t then

N
N

t

∆
∝

∆

or,  ∆N/∆t = λN, (13.10)

where λ is called the radioactive decay constant or disintegration constant.

The change in the number of nuclei in the sample* is dN = – ∆N in

time ∆t. Thus the rate of change of N is (in the limit ∆t → 0)

d
–

d

N
N

t
λ=

* ∆N is the number of nuclei that decay, and hence is always positive. dN is the
change in N, which may have either sign. Here it is negative, because out of
original N nuclei, ∆N have decayed, leaving (N–∆N ) nuclei.
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